Distribution and neurochemical characterization of neurons within the nucleus of the solitary tract responsive to serotonin agonist-induced hypophagia

نویسندگان

  • Daniel D. Lam
  • Ligang Zhou
  • Andreas Vegge
  • Philip Y. Xiu
  • Britt T. Christensen
  • Mayowa A. Osundiji
  • Chen-yu Yueh
  • Mark L. Evans
  • Lora K. Heisler
چکیده

Pharmacological compounds enhancing serotonergic tone significantly decrease food intake and are among the most clinically efficacious treatments for obesity. However, the central mechanisms through which serotonergic compounds modulate feeding behavior have not been fully defined. The primary relay center receiving visceral gastrointestinal information in the central nervous system is the nucleus of the solitary tract (NTS) in the caudal brainstem. Here we investigated whether the classic anorectic serotonin receptor agonist m-chloro-phenylpiperazine (mCPP) enhances the activity of metabolically sensitive NTS neurons. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation in rats, we observed that mCPP significantly and dose-dependently activated a discrete population of caudal NTS neurons at the level of the area postrema (AP). In particular, this pattern of FOS-IR induction was consistent with the location of catecholamine-containing neurons. Dual-labeling performed with FOS-IR and the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) revealed that mCPP induced FOS-IR in 83.7% of TH-IR containing neurons in the NTS at the level of the AP. The degree of activation of TH neurons was strongly negatively correlated with food intake. Moreover, this activation was specific to catecholamine neurons, with negligible induction of cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), or neurotensin neurons. NTS catecholaminergic neurons relay visceral gastrointestinal signals to both the lateral hypothalamus (LHA) and paraventricular nucleus of the hypothalamus (PVH), where these signals are integrated into autonomic and hormonal responses regulating food intake. The data presented here identify a novel mechanism through which a serotonin receptor agonist acting in the caudal brainstem may regulate ingestive behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of cells responsive to 5-HT6 receptor antagonist-induced hypophagia

The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the 5-HT(2C) receptor (5-HT(2C)R) in 5-HT's anorectic effect, pharmacological manipulation of the 5-HT₆ receptor (5-HT₆R) also reduces appetite and body weight and may be amenable to obesity tr...

متن کامل

Vestibular-mediated increase in central serotonin plays an important role in hypergravity-induced hypophagia in rats.

Exposure to a hypergravity environment induces acute transient hypophagia, which is partially restored by a vestibular lesion (VL), suggesting that the vestibular system is involved in the afferent pathway of hypergravity-induced hypophagia. When rats were placed in a 3-G environment for 14 days, Fos-containing cells increased in the paraventricular hypothalamic nucleus, the central nucleus of ...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 196  شماره 

صفحات  -

تاریخ انتشار 2009